Search results for "Three-level system."
showing 2 items of 2 documents
EFFECT OF LOW-FREQUENCY NOISE ON ADIABATIC PASSAGE IN A SUPERCONDUCTING NANOCIRCUIT
2011
Recent experiments have demonstrated coherent phenomena in three-level systems based on superconducting nanocircuits. This opens the possibility to detect Stimulated Raman Adiabatic Passage (STIRAP) in artificial atoms. Low-fequency noise (often 1/f) is one of the main sources of decoherence in these systems, and we study its effect on the transfer efficiency. We propose a way to analyze low frequency fluctuations in terms of fictitious correlated fluctuations of external parameters. We discuss a specific implementation, namely the Quantronium setup of a Cooper-pair box, showing that optimizing the trade-off between efficient coupling and protection against noise may allow us to observe co…
Effect of broadband noise on adiabatic passage in superconducting nanocircuits
2010
With the rapid technological progress in quantum-state engineering in superconducting devices there is an increasing demand for techniques of quantum control. Stimulated Raman adiabatic passage (STIRAP) is a powerful method in quantum optics which has remained largely unknown to solid-state physicists. It is used to achieve highly efficient and controlled population transfer in (discrete) multilevel quantum systems[1]. Apart from other potential applications in solid-state physics, adiabatic passage offers interesting possibilities to manipulate qubit circuits, in particular for the generation of nonclassical states in nanomechanical or electromagnetic resonators[2]. In this contribution, w…